Procuring AI without understanding it. Way to go?

The UK’s Digital Regulation Cooperation Forum (DRCF) has published a report on Transparency in the procurement of algorithmic systems (for short, the ‘AI procurement report’). Some of DRCF’s findings in the AI procurement report are astonishing, and should attract significant attention. The one finding that should definitely not go unnoticed is that, according to DRCF, ‘Buyers can lack the technical expertise to effectively scrutinise the [algorithmic systems] they are procuring, whilst vendors may limit the information they share with buyers’ (at 9). While this is not surprising, the ‘normality’ with which this finding is reported evidences the simple fact that, at least in the UK, it is accepted that the AI field is dominated by technology providers, that all institutional buyers are ‘AI consumers’, and that regulators do not seem to see a need to intervene to rebalance the situation.

The report is not specifically about public procurement of AI, but its content is relevant to assessing the conditions surrounding the acquisition of AI by the public sector. First, the report covers algorithmic systems other than AI—that is, automation based on simpler statistical techniques—but the issues it raises can only be more acute in relation to AI than in relation to simpler algorithmic systems (as the report itself highlights, at 9). Second, the report does not make explicit whether the mix of buyers from which it draws evidence includes public as well as private buyers. However, given the public sector’s digital skills gap, there is no reason to believe that the limited knowledge and asymmetries of information documented in the AI procurement report are less acute for public buyers than private buyers.

Moreover, the AI procurement report goes as far as to suggest that public sector procurement is somewhat in a better position than private sector procurement of AI because there are multiple guidelines focusing on public procurement (notably, the Guidelines for AI procurement). Given the shortcomings in those guidelines (see here for earlier analysis), this can hardly provide any comfort.

The AI procurement report evidences that UK (public and private) buyers are procuring AI they do not understand and cannot adequately monitor. This is extremely worrying. The AI procurement report presents evidence gathered by DRCF in two workshops with 23 vendors and buyers of algorithmic systems in Autumn 2022. The evidence base is qualitative and draws from a limited sample, so it may need to be approached with caution. However, its findings are sufficiently worrying as to require a much more robust policy intervention that the proposals in the recently released White Paper ‘AI regulation: a pro-innovation approach’ (for discussion, see here). In this blog post, I summarise the findings of the AI procurement report I find more problematic and link this evidence to the failing attempt at using public procurement to regulate the acquisition of AI by the public sector in the UK.

Misinformed buyers with limited knowledge and no ability to oversee

In its report, DRCF stresses that ‘some buyers lacked understanding of [algorithmic systems] and could struggle to recognise where an algorithmic process had been integrated into a system they were procuring’, and that ‘[t]his issue may be compounded where vendors fail to note that a solution includes AI or its subset, [machine learning]’ (at 9). The report goes on to stress that ‘[w]here buyers have insufficient information about the development or testing of an [algorithmic system], there is a risk that buyers could be deploying an [algorithmic system] that is unlawful or unethical. This risk is particularly acute for high-risk applications of [algorithmic systems], for example where an [algorithmic system] determines a person's access to employment or housing or where the application is in a highly regulated sector such as finance’ (at 10). Needless to say, however, this applies to a much larger set of public sector areas of activity, and the problems are not limited to high-risk applications involving individual rights, but also to those that involve high stakes from a public governance perspective.

Similarly, DRCF stresses that while ‘vendors use a range of performance metrics and testing methods … without appropriate technical expertise or scrutiny, these metrics may give buyers an incomplete picture of the effectiveness of an [algorithmic system]’; ‘vendors [can] share performance metrics that overstate the effectiveness of their [algorithmic system], whilst omitting other metrics which indicate lower effectiveness in other areas. Some vendors raised concerns that their competitors choose the most favourable (i.e., the highest) performance metric to win procurement contracts‘, while ‘not all buyers may have the technical knowledge to understand which performance metrics are most relevant to their procurement decision’ (at 10). This demolishes any hope that buyers facing this type of knowledge gap and asymmetry of information can compare algorithmic systems in a meaningful way.

The issue is further compounded by the lack of standards and metrics. The report stresses this issue: ‘common or standard metrics do not yet exist within industry for the evaluation of [algorithmic systems]. For vendors, this can make it more challenging to provide useful information, and for buyers, this lack of consistency can make it difficult to compare different [algorithmic systems]. Buyers also told us that they would find more detail on the performance of the [algorithmic system] being procured helpful - including across a range of metrics. The development of more consistent performance metrics could also help regulators to better understand how accurate an [algorithmic system] is in a specific context’ (at 11).

Finally, the report also stresses that vendors have every incentive to withhold information from buyers, both because ‘sharing too much technical detail or knowledge could allow buyers to re-develop their product’ and because ‘they remain concerned about revealing commercially sensitive information to buyers’ (at 10). In that context, given the limited knowledge and understanding documented above, it can even be difficult for a buyer to ascertain which information it has not been given.

The DRCF AI procurement report then focuses on mechanisms that could alleviate some of the issues it identifies, such as standardisation, certification and audit mechanisms, as well as AI transparency registers. However, these mechanisms raise significant questions, not only in relation to their practical implementation, but also regarding the continued reliance on the AI industry (and thus, AI vendors) for the development of some of its foundational elements—and crucially, standards and metrics. To a large extent, the AI industry would be setting the benchmark against which their processes, practices and performance is to be measured. Even if a third party is to carry out such benchmarking or compliance analysis in the context of AI audits, the cards can already be stacked against buyers.

Not the way forward for the public sector (in the UK)

The DRCF AI procurement report should give pause to anyone hoping that (public) buyers can drive the process of development and adoption of these technologies. The AI procurement report clearly evidences that buyers with knowledge disadvantages and information asymmetries are at the merci of technology providers—and/or third-party certifiers (in the future). The evidence in the report clearly suggests that this a process driven by technology providers and, more worryingly, that (most) buyers are in no position to critically assess and discipline vendor behaviour.

The question arises why would any buyer acquire and deploy a technology it does not understand and is in no position to adequately assess. But the hype and hard-selling surrounding AI, coupled with its abstract potential to generate significant administrative and operational advantages seem to be too hard to resist, both for private sector entities seeking to gain an edge (or at least not lag behind competitors) in their markets, and by public sector entities faced with AI’s policy irresistibility.

In the public procurement context, the insights from DRCF’s AI procurement report stress that the fundamental imbalance between buyers and vendors of digital technologies undermines the regulatory role that public procurement is expected to play. Only a buyer that had equal or superior technical ability and that managed to force full disclosure of the relevant information from the technology provider would be in a position to (try to) dictate the terms of the acquisition and deployment of the technology, including through the critical assessment and, if needed, modification of emerging technical standards that could well fall short of the public interest embedded in the process of public sector digitalisation—though it would face significant limitations.

This is an ideal to which most public buyers cannot aspire. In fact, in the UK, the position is the reverse and the current approach is to try to facilitate experimentation with digital technologies for public buyers with no knowledge or digital capability whatsoever—see the Crown Commercial Service’s Artificial Intelligence Dynamic Purchasing System (CCS AI DPS), explicitly targeting inexperienced and digitally novice, to put it politely, public buyers by stressing that ‘If you are new to AI you will be able to procure services through a discovery phase, to get an understanding of AI and how it can benefit your organisation’.

Given the evidence in the DRCF AI report, this approach can only inflate the number of public sector buyers at the merci of technology providers. Especially because, while the CCS AI DPS tries to address some issues, such as ethical risks (though the effectiveness of this can also be queried), it makes clear that ‘quality, price and cultural fit (including social value) can be assessed based on individual customer requirements’. With ‘AI quality’ capturing all the problematic issues mentioned above (and, notably, AI performance), the CCS AI DPS is highly problematic.

If nothing else, the DRCF AI procurement report gives further credence to the need to change regulatory tack. Most importantly, the report evidences that there is a very real risk that public sector entities are currently buying AI they do not understand and are in no position to effectively control post-deployment. This risk needs to be addressed if the UK public is to trust the accelerating process of public sector digitalisation. As formulated elsewhere, this calls for a series of policy and regulatory interventions.

Ensuring that the adoption of AI in the public sector operates in the public interest and for the benefit of all citizens requires new legislation supported by a new mechanism of external oversight and enforcement. New legislation is required to impose specific minimum requirements of eg data governance and algorithmic impact assessment and related transparency across the public sector, to address the issue of lack of standards and metrics but without reliance on their development by and within the AI industry. Primary legislation would need to be developed by statutory guidance of a much more detailed and actionable nature than eg the current Guidelines for AI procurement. These developed requirements can then be embedded into public contracts by reference, and thus protect public buyers from vendor standard cherry-picking, as well as providing a clear benchmark against which to assess tenders.

Legislation would also be necessary to create an independent authority—eg an ‘AI in the Public Sector Authority’ (AIPSA)—with powers to enforce those minimum requirements across the public sector. AIPSA is necessary, as oversight of the use of AI in the public sector does not currently fall within the scope of any specific sectoral regulator and the general regulators (such as the Information Commissioner’s Office) lack procurement-specific knowledge. Moreover, units within Cabinet Office (such as the Office for AI or the Central Digital and Data Office) lack the required independence. The primary role of AIPSA would be to constrain the process of adoption of AI by the public sector, especially where the public buyer lacks digital capacity and is thus at risk of capture or overpowering by technological vendors.

In that regard, and until sufficient in-house capability is built to ensure adequate understanding of the technologies being procured (especially in the case of complex AI), and adequate ability to manage digital procurement governance requirements independently, AIPSA would have to approve all projects to develop, procure and deploy AI in the public sector to ensure that they meet the required legislative safeguards in terms of data governance, impact assessment, etc. This approach could progressively be relaxed through eg block exemption mechanisms, once there is sufficiently detailed understanding and guidance on specific AI use cases, and/or in relation to public sector entities that could demonstrate sufficient in-house capability, eg through a mechanism of independent certification in accordance with benchmarks set by AIPSA, or certification by AIPSA itself.

In parallel, it would also be necessary for the Government to develop a clear and sustainably funded strategy to build in-house capability in the public sector, including clear policies on the minimisation of expenditure directed at the engagement of external consultants and the development of guidance on how to ensure the capture and retention of the knowledge developed within outsourced projects (including, but not only, through detailed technical documentation).

None of this features in the recently released White Paper ‘AI regulation: a pro-innovation approach’. However, DRCF’s AI procurement report further evidences that these policy interventions are necessary. Else, the UK will be a jurisdiction where the public sector acquires and deploys technology it does not understand and cannot control. Surely, this is not the way to go.

AI regulation by contract: submission to UK Parliament

In October 2022, the Science and Technology Committee of the House of Commons of the UK Parliament (STC Committee) launched an inquiry on the ‘Governance of Artificial Intelligence’. This inquiry follows the publication in July 2022 of the policy paper ‘Establishing a pro-innovation approach to regulating AI’, which outlined the UK Government’s plans for light-touch AI regulation. The inquiry seeks to examine the effectiveness of current AI governance in the UK, and the Government’s proposals that are expected to follow the policy paper and provide more detail. The STC Committee has published 98 pieces of written evidence, including submissions from UK regulators and academics that will make for interesting reading. Below is my submission, focusing on the UK’s approach to ‘AI regulation by contract’.

A. Introduction

01. This submission addresses two of the questions formulated by the House of Commons Science and Technology Committee in its inquiry on the ‘Governance of artificial intelligence (AI)’. In particular:

  • How should the use of AI be regulated, and which body or bodies should provide regulatory oversight?

  • To what extent is the legal framework for the use of AI, especially in making decisions, fit for purpose?

    • Is more legislation or better guidance required?

02. This submission focuses on the process of AI adoption in the public sector and, particularly, on the acquisition of AI solutions. It evidences how the UK is consolidating an inadequate approach to ‘AI regulation by contract’ through public procurement. Given the level of abstraction and generality of the current guidelines for AI procurement, major gaps in public sector digital capabilities, and potential structural conflicts of interest, procurement is currently an inadequate tool to govern the process of AI adoption in the public sector. Flanking initiatives, such as the pilot algorithmic transparency standard, are unable to address and mitigate governance risks. Contrary to the approach in the AI Regulation Policy Paper,[1] plugging the regulatory gap will require (i) new legislation supported by a new mechanism of external oversight and enforcement (an ‘AI in the Public Sector Authority’ (AIPSA)); (ii) a well-funded strategy to boost in-house public sector digital capabilities; and (iii) the introduction of a (temporary) mechanism of authorisation of AI deployment in the public sector. The Procurement Bill would not suffice to address the governance shortcomings identified in this submission.

B. ‘AI Regulation by Contract’ through Procurement

03. Unless the public sector develops AI solutions in-house, which is extremely rare, the adoption of AI technologies in the public sector requires a procurement procedure leading to their acquisition. This places procurement at the frontline of AI governance because the ‘rules governing the acquisition of algorithmic systems by governments and public agencies are an important point of intervention in ensuring their accountable use’.[2] In that vein, the Committee on Standards in Public Life stressed that the ‘Government should use its purchasing power in the market to set procurement requirements that ensure that private companies developing AI solutions for the public sector appropriately address public standards. This should be achieved by ensuring provisions for ethical standards are considered early in the procurement process and explicitly written into tenders and contractual arrangements’.[3] Procurement is thus erected as a public interest gatekeeper in the process of adoption of AI by the public sector.

04. However, to effectively regulate by contract, it is at least necessary to have (i) clarity on the content of the obligations to be imposed, (ii) effective enforcement mechanisms, and (iii) public sector capacity to establish, monitor, and enforce those obligations. Given that the aim of regulation by contract would be to ensure that the public sector only adopts trustworthy AI solutions and deploys them in a way that promotes the public interest in compliance with existing standards of protection of fundamental and individual rights, exercising the expected gatekeeping role in this context requires a level of legal, ethical, and digital capability well beyond the requirements of earlier instances of regulation by contract to eg enforce labour standards.

05. On a superficial reading, it could seem that the National AI Strategy tackled this by highlighting the importance of the public sector’s role as a buyer and stressing that the Government had already taken steps ‘to inform and empower buyers in the public sector, helping them to evaluate suppliers, then confidently and responsibly procure AI technologies for the benefit of citizens’.[4] The National AI Strategy referred, in particular, to the setting up of the Crown Commercial Service’s AI procurement framework (the ‘CCS AI Framework’),[5] and the adoption of the Guidelines for AI procurement (the ‘Guidelines’)[6] as enabling tools. However, a close look at these instruments will show their inadequacy to provide clarity on the content of procedural and contractual obligations aimed at ensuring the goals stated above (para 03), as well as their potential to widen the existing public sector digital capability gap. Ultimately, they do not enable procurement to carry out the expected gatekeeping role.

C. Guidelines and Framework for AI procurement

06. Despite setting out to ‘provide a set of guiding principles on how to buy AI technology, as well as insights on tackling challenges that may arise during procurement’, the Guidelines provide high-level recommendations that cannot be directly operationalised by inexperienced public buyers and/or those with limited digital capabilities. For example, the recommendation to ‘Try to address flaws and potential bias within your data before you go to market and/or have a plan for dealing with data issues if you cannot rectify them yourself’ (guideline 3) not only requires a thorough understanding of eg the Data Ethics Framework[7] and the Guide to using Artificial Intelligence in the public sector,[8] but also detailed insights on data hazards.[9] This leads the Guidelines to stress that it may be necessary ‘to seek out specific expertise to support this; data architects and data scientists should lead this process … to understand the complexities, completeness and limitations of the data … available’.

07. Relatedly, some of the recommendations are very open ended in areas without clear standards. For example, the effectiveness of the recommendation to ‘Conduct initial AI impact assessments at the start of the procurement process, and ensure that your interim findings inform the procurement. Be sure to revisit the assessments at key decision points’ (guideline 4) is dependent on the robustness of such impact assessments. However, the Guidelines provide no further detail on how to carry out such assessments, other than a list of some generic areas for consideration (eg ‘potential unintended consequences’) and a passing reference to emerging guidelines in other jurisdictions. This is problematic, as the development of algorithmic impact assessments is still at an experimental stage,[10] and emerging evidence shows vastly diverging approaches, eg to risk identification.[11] In the absence of clear standards, algorithmic impact assessments will lead to inconsistent approaches and varying levels of robustness. The absence of standards will also require access to specialist expertise to design and carry out the assessments.

08. Ultimately, understanding and operationalising the Guidelines requires advanced digital competency, including in areas where best practices and industry standards are still developing.[12] However, most procurement organisations lack such expertise, as a reflection of broader digital skills shortages across the public sector,[13] with recent reports placing civil service vacancies for data and tech roles throughout the civil service alone close to 4,000.[14] This not only reduces the practical value of the Guidelines to facilitate responsible AI procurement by inexperienced buyers with limited capabilities, but also highlights the role of the CCS AI Framework for AI adoption in the public sector.

09. The CCS AI Framework creates a procurement vehicle[15] to facilitate public buyers’ access to digital capabilities. CCS’ description for public buyers stresses that ‘If you are new to AI you will be able to procure services through a discovery phase, to get an understanding of AI and how it can benefit your organisation.’[16] The Framework thus seeks to enable contracting authorities, especially those lacking in-house expertise, to carry out AI procurement with the support of external providers. While this can foster the uptake of AI in the public sector in the short term, it is highly unlikely to result in adequate governance of AI procurement, as this approach focuses at most on the initial stages of AI adoption but can hardly be sustainable throughout the lifecycle of AI use in the public sector—and, crucially, would leave the enforcement of contractualised AI governance obligations in a particularly weak position (thus failing to meet the enforcement requirement at para 04). Moreover, it would generate a series of governance shortcomings which avoidance requires an alternative approach.

D. Governance Shortcomings

10. Despite claims to the contrary in the National AI Strategy (above para 05), the approach currently followed by the Government does not empower public buyers to responsibly procure AI. The Guidelines are not susceptible of operationalisation by inexperienced public buyers with limited digital capabilities (above paras 06-08). At the same time, the Guidelines are too generic to support sophisticated approaches by more advanced digital buyers. The Guidelines do not reduce the uncertainty and complexity of procuring AI and do not include any guidance on eg how to design public contracts to perform the regulatory functions expected under the ‘AI regulation by contract’ approach.[17] This is despite existing recommendations on eg the development of ‘model contracts and framework agreements for public sector procurement to incorporate a set of minimum standards around ethical use of AI, with particular focus on expected levels transparency and explainability, and ongoing testing for fairness’.[18] The guidelines thus fail to address the first requirement for effective regulation by contract in relation to clarifying the relevant obligations (para 04).

11. The CCS Framework would also fail to ensure the development of public sector capacity to establish, monitor, and enforce AI governance obligations (para 04). Perhaps counterintuitively, the CCS AI Framework can generate a further disempowerment of public buyers seeking to rely on external capabilities to support AI adoption. There is evidence that reliance on outside providers and consultants to cover immediate needs further erodes public sector capability in the long term,[19] as well as creating risks of technical and intellectual debt in the deployment of AI solutions as consultants come and go and there is no capture of institutional knowledge and memory.[20] This can also exacerbate current trends of pilot AI graveyard spirals, where most projects do not reach full deployment, at least in part due to insufficient digital capabilities beyond the (outsourced) pilot phase. This tends to result in self-reinforcing institutional weaknesses that can limit the public sector’s ability to drive digitalisation, not least because technical debt quickly becomes a significant barrier.[21] It also runs counter to best practices towards building public sector digital maturity,[22] and to the growing consensus that public sector digitalisation first and foremost requires a prioritised investment in building up in-house capabilities.[23] On this point, it is important to note the large size of the CCS AI Framework, which was initially pre-advertised with a £90 mn value,[24] but this was then revised to £200 mn over 42 months.[25] Procuring AI consultancy services under the Framework can thus facilitate the funnelling of significant amounts of public funds to the private sector, rather than using those funds to build in-house capabilities. It can result in multiple public buyers entering contracts for the same expertise, which thus duplicates costs, as well as in a cumulative lack of institutional learning by the public sector because of atomised and uncoordinated contractual relationships.

12. Beyond the issue of institutional dependency on external capabilities, the cumulative effect of the Guidelines and the Framework would be to outsource the role of ‘AI regulation by contract’ to unaccountable private providers that can then introduce their own biases on the substantive and procedural obligations to be embedded in the relevant contracts—which would ultimately negate the effectiveness of the regulatory approach as a public interest safeguard. The lack of accountability of external providers would not only result from the weakness (or absolute inability) of the public buyer to control their activities and challenge important decisions—eg on data governance, or algorithmic impact assessments, as above (paras 06-07)—but also from the potential absence of effective and timely external checks. Market mechanisms are unlikely to deliver adequate checks due market concentration and structural conflicts of interest affecting both providers that sometimes provide consultancy services and other times are involved in the development and deployment of AI solutions,[26] as well as a result of insufficiently effective safeguards on conflicts of interest resulting from quickly revolving doors. Equally, broader governance controls are unlikely to be facilitated by flanking initiatives, such as the pilot algorithmic transparency standard.

13. To try to foster accountability in the adoption of AI by the public sector, the UK is currently piloting an algorithmic transparency standard.[27] While the initial six examples of algorithmic disclosures published by the Government provide some details on emerging AI use cases and the data and types of algorithms used by publishing organisations, and while this information could in principle foster accountability, there are two primary shortcomings. First, completing the documentation requires resources and, in some respects, advanced digital capabilities. Organisations participating in the pilot are being supported by the Government, which makes it difficult to assess to what extent public buyers would generally be able to adequately prepare the documentation on their own. Moreover, the documentation also refers to some underlying requirements, such as algorithmic impact assessments, that are not yet standardised (para 07). In that, the pilot standard replicates the same shortcomings discussed above in relation to the Guidelines. Algorithmic disclosure will thus only be done by entities with high capabilities, or it will be outsourced to consultants (thus reducing the scope for the revelation of governance-relevant information).

14. Second, compliance with the standard is not mandatory—at least while the pilot is developed. If compliance with the algorithmic transparency standard remains voluntary, there are clear governance risks. It is easy to see how precisely the most problematic uses may not be the object of adequate disclosures under a voluntary self-reporting mechanism. More generally, even if the standard was made mandatory, it would be necessary to implement an external quality control mechanism to mitigate problems with the quality of self-reported disclosures that are pervasive in other areas of information-based governance.[28] Whether the Central Digital and Data Office (currently in charge of the pilot) would have capacity (and powers) to do so remains unclear, and it would in any case lack independence.

15. Finally, it should be stressed that the current approach to transparency disclosure following the adoption of AI (ex post) can be problematic where the implementation of the AI is difficult to undo and/or the effects of malicious or risky AI are high stakes or impossible to revert. It is also problematic in that the current approach places the burden of scrutiny and accountability outside the public sector, rather than establishing internal, preventative (ex ante) controls on the deployment of AI technologies that could potentially be very harmful for fundamental and individual socio-economic rights—as evidenced by the inclusion of some fields of application of AI in the public sector as ‘high risk’ in the EU’s proposed EU AI Act.[29] Given the particular risks that AI deployment in the public sector poses to fundamental and individual rights, the minimalistic and reactive approach outlined in the AI Regulation Policy Paper is inadequate.

E. Conclusion: An Alternative Approach

16. Ensuring that the adoption of AI in the public sector operates in the public interest and for the benefit of all citizens will require new legislation supported by a new mechanism of external oversight and enforcement. New legislation is required to impose specific minimum requirements of eg data governance and algorithmic impact assessment and related transparency across the public sector. Such legislation would then need to be developed in statutory guidance of a much more detailed and actionable nature than the current Guidelines. These developed requirements can then be embedded into public contracts by reference. Without such clarification of the relevant substantive obligations, the approach to ‘AI regulation by contract’ can hardly be effective other than in exceptional cases.

17. Legislation would also be necessary to create an independent authority—eg an ‘AI in the Public Sector Authority’ (AIPSA)—with powers to enforce those minimum requirements across the public sector. AIPSA is necessary, as oversight of the use of AI in the public sector does not currently fall within the scope of any specific sectoral regulator and the general regulators (such as the Information Commissioner’s Office) lack procurement-specific knowledge. Moreover, units within Cabinet Office (such as the Office for AI or the Central Digital and Data Office) lack the required independence.

18. It would also be necessary to develop a clear and sustainably funded strategy to build in-house capability in the public sector, including clear policies on the minimisation of expenditure directed at the engagement of external consultants and the development of guidance on how to ensure the capture and retention of the knowledge developed within outsourced projects (including, but not only, through detailed technical documentation).

19. Until sufficient in-house capability is built to ensure adequate understanding and ability to manage digital procurement governance requirements independently, the current reactive approach should be abandoned, and AIPSA should have to approve all projects to develop, procure and deploy AI in the public sector to ensure that they meet the required legislative safeguards in terms of data governance, impact assessment, etc. This approach could progressively be relaxed through eg block exemption mechanisms, once there is sufficiently detailed understanding and guidance on specific AI use cases and/or in relation to public sector entities that could demonstrate sufficient in-house capability, eg through a mechanism of independent certification.

20. The new legislation and statutory guidance would need to be self-standing, as the Procurement Bill would not provide the required governance improvements. First, the Procurement Bill pays limited to no attention to artificial intelligence and the digitalisation of procurement.[30] An amendment (46) that would have created minimum requirements on automated decision-making and data ethics was not moved at the Lords Committee stage, and it seems unlikely to be taken up again at later stages of the legislative process. Second, even if the Procurement Bill created minimum substantive requirements, it would lack adequate enforcement mechanisms, not least due to the limited powers and lack of independence of the foreseen Procurement Review Unit (to also sit within Cabinet Office).

_______________________________________
Note: all websites last accessed on 25 October 2022.

[1] Department for Digital, Culture, Media and Sport, Establishing a pro-innovation approach to regulating AI. An overview of the UK’s emerging approach (CP 728, 2022).

[2] Ada Lovelace Institute, AI Now Institute and Open Government Partnership, Algorithmic Accountability for the Public Sector (August 2021) 33.

[3] Committee on Standards in Public Life, Intelligence and Public Standards (2020) 51.

[4] Department for Digital, Culture, Media and Sport, National AI Strategy (CP 525, 2021) 47.

[5] AI Dynamic Purchasing System < https://www.crowncommercial.gov.uk/agreements/RM6200 >.

[6] Office for Artificial Intelligence, Guidelines for AI Procurement (2020) < https://www.gov.uk/government/publications/guidelines-for-ai-procurement/guidelines-for-ai-procurement >.

[7] Central Digital and Data Office, Data Ethics Framework (Guidance) (2020) < https://www.gov.uk/government/publications/data-ethics-framework >.

[8] Central Digital and Data Office, A guide to using artificial intelligence in the public sector (2019) < https://www.gov.uk/government/collections/a-guide-to-using-artificial-intelligence-in-the-public-sector >.

[9] See eg < https://datahazards.com/index.html >.

[10] Ada Lovelace Institute, Algorithmic impact assessment: a case study in healthcare (2022) < https://www.adalovelaceinstitute.org/report/algorithmic-impact-assessment-case-study-healthcare/ >.

[11] A Sanchez-Graells, ‘Algorithmic Transparency: Some Thoughts On UK's First Four Published Disclosures and the Standards’ Usability’ (2022) < https://www.howtocrackanut.com/blog/2022/7/11/algorithmic-transparency-some-thoughts-on-uk-first-disclosures-and-usability >.

[12] A Sanchez-Graells, ‘“Experimental” WEF/UK Guidelines for AI Procurement: Some Comments’ (2019) < https://www.howtocrackanut.com/blog/2019/9/25/wef-guidelines-for-ai-procurement-and-uk-pilot-some-comments >.

[13] See eg Public Accounts Committee, Challenges in implementing digital change (HC 2021-22, 637).

[14] S Klovig Skelton, ‘Public sector aims to close digital skills gap with private sector’ (Computer Weekly, 4 Oct 2022) < https://www.computerweekly.com/news/252525692/Public-sector-aims-to-close-digital-skills-gap-with-private-sector >.

[15] It is a dynamic purchasing system, or a list of pre-screened potential vendors public buyers can use to carry out their own simplified mini-competitions for the award of AI-related contracts.

[16] Above (n 5).

[17] This contrasts with eg the EU project to develop standard contractual clauses for the procurement of AI by public organisations. See < https://living-in.eu/groups/solutions/ai-procurement >.

[18] Centre for Data Ethics and Innovation, Review into bias in algorithmic decision-making (2020) < https://www.gov.uk/government/publications/cdei-publishes-review-into-bias-in-algorithmic-decision-making/main-report-cdei-review-into-bias-in-algorithmic-decision-making >.

[19] V Weghmann and K Sankey, Hollowed out: The growing impact of consultancies in public administrations (2022) < https://www.epsu.org/sites/default/files/article/files/EPSU%20Report%20Outsourcing%20state_EN.pdf >.

[20] A Sanchez-Graells, ‘Identifying Emerging Risks in Digital Procurement Governance’ in idem, Digital Technologies and Public Procurement. Gatekeeping and experimentation in digital public governance (OUP, forthcoming) < https://ssrn.com/abstract=4254931 >.

[21] M E Nielsen and C Østergaard Madsen, ‘Stakeholder influence on technical debt management in the public sector: An embedded case study’ (2022) 39 Government Information Quarterly 101706.

[22] See eg Kevin C Desouza, ‘Artificial Intelligence in the Public Sector: A Maturity Model’ (2021) IBM Centre for the Business of Government < https://www.businessofgovernment.org/report/artificial-intelligence-public-sector-maturity-model >.

[23] A Clarke and S Boots, A Guide to Reforming Information Technology Procurement in the Government of Canada (2022) < https://govcanadacontracts.ca/it-procurement-guide/ >.

[24] < https://ted.europa.eu/udl?uri=TED:NOTICE:600328-2019:HTML:EN:HTML&tabId=1&tabLang=en >.

[25] < https://ted.europa.eu/udl?uri=TED:NOTICE:373610-2020:HTML:EN:HTML&tabId=1&tabLang=en >.

[26] See S Boots, ‘“Charbonneau Loops” and government IT contracting’ (2022) < https://sboots.ca/2022/10/12/charbonneau-loops-and-government-it-contracting/ >.

[27] Central Digital and Data Office, Algorithmic Transparency Standard (2022) < https://www.gov.uk/government/collections/algorithmic-transparency-standard >.

[28] Eg in the context of financial markets, there have been notorious ongoing problems with ensuring adequate quality in corporate and investor disclosures.

[29] < https://artificialintelligenceact.eu/ >.

[30] P Telles, ‘The lack of automation ideas in the UK Gov Green Paper on procurement reform’ (2021) < http://www.telles.eu/blog/2021/1/13/the-lack-of-automation-ideas-in-the-uk-gov-green-paper-on-procurement-reform >.

Governing the Assessment and Taking of Risks in Digital Procurement Governance

In a previous blog post, I explored the main governance risks and legal obligations arising from the adoption of digital technologies, which revolve around data governance, algorithmic transparency, technological dependency, technical debt, cybersecurity threats, the risks stemming from the long-term erosion of the skills base in the public sector, and difficult trade-offs due to the uncertainty surrounding immature and still changing technologies within an also evolving regulatory framework. To address such risks and ensure compliance with the relevant governance obligations, I stressed the need to embed a comprehensive mechanism of risk assessment in the process of technological adoption.

In a new draft chapter (num 9) for my book project, I analyse how to embed risk assessments in the initial stages of decision-making processes leading to the adoption of digital solutions for procurement governance, and how to ensure that they are iterated throughout the lifecycle of use of digital technologies. To do so, I critically review the model of AI risk regulation that is emerging in the EU and the UK, which is based on self-regulation and self-assessment. I consider its shortcomings and how to strengthen the model, including the possibility of subjecting the process of technological adoption to external checks. The analysis converges with a broader proposal for institutionalised regulatory checks on the adoption of digital technologies by the public sector that I will develop more fully in another part of the book.

This post provides a summary of my main findings, on which I will welcome any comments: a.sanchez-graells@bristol.ac.uk. The full draft chapter is free to download: A Sanchez-Graells, ‘Governing the Assessment and Taking of Risks in Digital Procurement Governance’ to be included in A Sanchez-Graells, Digital Technologies and Public Procurement. Gatekeeping and experimentation in digital public governance (OUP, forthcoming), Available at SSRN: https://ssrn.com/abstract=4282882.

AI Risk Regulation

The emerging (global) model of AI regulation is risk-based—as opposed to a strict precautionary approach. This implies an assumption that ‘a technology will be adopted despite its harms’. This primarily means accepting that technological solutions may (or will) generate (some) negative impacts on public and private interests, even if it is not known when or how those harms will arise, or how extensive they will be. AI are unique, as they are ‘long-term, low probability, systemic, and high impact’, and ‘AI both poses “aggregate risks” across systems and low probability but “catastrophic risks to society”’ [for discussion, see Margot E Kaminski, ‘Regulating the risks of AI’ (2023) 103 Boston University Law Review, forthcoming]

This should thus trigger careful consideration of the ultimate implications of AI risk regulation, and advocates in favour of taking a robust regulatory approach—including to the governance of the risk regulation mechanisms put in place, which may well require external controls, potentially by an independent authority. By contrast, the emerging model of AI risk regulation in the context of procurement digitalisation in the EU and the UK leaves the adoption of digital technologies by public buyers largely unregulated and only subject to voluntary measures, or to open-ended obligations in areas without clear impact assessment standards (which reduces the prospect of effective mandatory enforcement).

Governance of Procurement Digitalisation in the EU

Despite the emergence of a quickly expanding set of EU digital law instruments imposing a patchwork of governance obligations on public buyers, whether or not they adopt digital technologies (see here), the primary decision whether to adopt digital technologies is not subject to any specific constraints, and the substantive obligations that follow from the diverse EU law instruments tend to refer to open-ended standards that require advanced technical capabilities to operationalise them. This would not be altered by the proposed EU AI Act.

Procurement-related AI uses are classified as minimal risk under the EU AI Act, which leaves them subject only to voluntary self-regulation via codes of conduct—yet to be developed. Such codes of conduct should encourage voluntary compliance with the requirements applicable to high-risk AI uses—such as risk management systems, data and data governance requirements, technical documentation, record-keeping, transparency, or accuracy, robustness and cybersecurity requirements—‘on the basis of technical specifications and solutions that are appropriate means of ensuring compliance with such requirements in light of the intended purpose of the systems.’ This seems to introduce a further element of proportionality or ‘adaptability’ requirement that could well water down the requirements applicable to minimal risk AI uses.

Importantly, while it is possible for Member States to draw such codes of conduct, the EU AI Act would pre-empt Member States from going further and mandating compliance with specific obligations (eg by imposing a blanket extension of the governance requirements designed for high-risk AI uses) across their public administrations. The emergent EU model is thus clearly limited to the development of voluntary codes of conduct and their likely content, while yet unknown, seems unlikely to impose the same standards applicable to the adoption of high-risk AI uses.

Governance of Procurement Digitalisation in the UK

Despite its deliberate light-touch approach to AI regulation and actively seeking to deviate from the EU, the UK is relatively advanced in the formulation of voluntary standards to govern procurement digitalisation. Indeed, the UK has adopted guidance for the use of AI in the public sector, and for AI procurement, and is currently piloting an algorithmic transparency standard (see here). The UK has also adopted additional guidance in the Digital, Data and Technology Playbook and the Technology Code of Practice. Remarkably, despite acknowledging the need for risk assessments—and even linking their conduct to spend approvals required for the acquisition of digital technologies by central government organisations—none of these instruments provides clear standards on how to assess (and mitigate) risks related to the adoption of digital technologies.

Thus, despite the proliferation of guidance documents, the substantive assessment of governance risks in digital procurement remains insufficiently addressed and left to undefined risk assessment standards and practices. The only exception concerns cyber security assessments, given the consolidated approach and guidance of the National Cyber Security Centre. This lack of precision in the substantive requirements applicable to data and algorithmic impact assessments clearly constrains the likely effectiveness of the UK’s approach to embedding technology-related impact assessments in the process of adoption of digital technologies for procurement governance (and, more generally, for public governance). In the absence of clear standards, data and algorithmic impact assessments will lead to inconsistent approaches and varying levels of robustness. The absence of standards will also increase the need to access specialist expertise to design and carry out the assessments. Developing such standards and creating an effective institutional mechanism to ensure compliance therewith thus remain a challenge.

The Need for Strengthened Digital Procurement Governance

Both in the EU and the UK, the emerging model of AI risk regulation leaves digital procurement governance to compliance with voluntary measures such as (future) codes of conduct or transparency standards or impose open-ended obligations in areas without clear standards (which reduces the prospect of effective mandatory enforcement). This follows general trends of AI risk regulation and evidences the emergence of a (sub)model highly dependent on self-regulation and self-assessment. This approach is rather problematic.

Self-Regulation: Outsourcing Impact Assessment Regulation to the Private Sector

The absence of mandatory standards for data and algorithmic impact assessments, as well as the embedded flexibility in the standards for cyber security, are bound to outsource the setting of the substantive requirements for those impact assessments to private vendors offering solutions for digital procurement governance. With limited public sector digital capability preventing a detailed specification of the applicable requirements, it is likely that these will be limited to a general obligation for tenderers to provide an impact assessment plan, perhaps by reference to emerging (international private) standards. This would imply the outsourcing of standard setting for risk assessments to private standard-setting organisations and, in the absence of those standards, to the tenderers themselves. This generates a clear and problematic risk of regulatory capture. Moreover, this process of outsourcing or excessively reliance on private agents to commercially determine impact assessments requirements is not sufficiently exposed to scrutiny and contestation.

Self-Assessment: Inadequacy of Mechanisms for Contestability and Accountability

Public buyers will rarely develop the relevant technological solutions but rather acquire them from technological providers. In that case, the duty to carry out the self-assessment will (or should be) cascaded down to the technology provider through contractual obligations. This would place the technology provider as ‘first party’ and the public buyer as ‘second party’ in relation to assuring compliance with the applicable obligations. In a setting of limited public sector digital capability, and in part as a result of a lack of clear standards providing an applicable benchmark (as above), the self-assessment of compliance with risk management requirements will either be de facto outsourced to private vendors (through a lack of challenge of their practices), or carried out by public buyers with limited capabilities (eg during the oversight of contract implementation). Even where public buyers have the required digital capabilities to carry out a more thorough analysis, they lack independence. ‘Second party’ assurance models unavoidably raise questions about their integrity due to the conflicting interests of the assurance provider who wants to use the system (ie the public buyer).

This ‘second party’ assurance model does not include adequate challenge mechanisms despite efforts to disclose (parts of) the relevant self-assessments. Such disclosures are constrained by general problems with ‘comply or explain’ information-based governance mechanisms, with the emerging model showing design features that have proven problematic in other contexts (such as corporate governance and financial market regulation). Moreover, there is no clear mechanism to contest the decisions to adopt digital technologies revealed by the algorithmic disclosures. In many cases, shortcomings in the risk assessments and the related minimisation and mitigation measures will only become observable after the materialisation of the underlying harms. For example, the effects of the adoption of a defective digital solution for decision-making support (eg a recommender system) will only emerge in relation to challengeable decisions in subsequent procurement procedures that rely on such solution. At that point, undoing the effects of the use of the tool may be impossible or excessively costly. In this context, challenges based on procedure-specific harms, such as the possibility to challenge discrete procurement decisions under the general rules on procurement remedies, are inadequate. Not least, because there can be negative systemic harms that are very hard to capture in the challenge to discrete decisions, or for which no agent with active standing has adequate incentives. To avoid potential harms more effectively, ex ante external controls are needed instead.

Creating External Checks on Procurement Digitalisation

It is thus necessary to consider the creation of external ex ante controls applicable to these decisions, to ensure an adequate embedding of effective risk assessments to inform (and constrain) them. Two models are worth considering: certification schemes and independent oversight.

Certification or Conformity Assessments

While not applicable to procurement uses, the model of conformity assessment in the proposed EU AI Act offers a useful blueprint. The main potential shortcoming of conformity assessment systems is that they largely rely on self-assessments by the technology vendors, and thus on first party assurance. Third-party certification (or algorithmic audits) is possible, but voluntary. Whether there would be sufficient (market) incentives to generate a broad (voluntary) use of third-party conformity assessments remains to be seen. While it could be hoped that public buyers could impose the use of certification mechanisms as a condition for participation in tender procedures, this is a less than guaranteed governance strategy given the EU procurement rules’ functional approach to the use of labels and certificates—which systematically require public buyers to accept alternative means of proof of compliance. This thus seems to offer limited potential for (voluntary) certification schemes in this specific context.

Relatedly, the conformity assessment system foreseen in the EU AI Act is also weakened by its reliance on vague concepts with non-obvious translation into verifiable criteria in the context of a third-party assurance audit. This can generate significant limitations in the conformity assessment process. This difficulty is intended to be resolved through the development of harmonised standards by European standardisation organisations and, where those do not exist, through the approval by the European Commission of common specifications. However, such harmonised standards will largely create the same risks of commercial regulatory capture mentioned above.

Overall, the possibility of relying on ‘third-party’ certification schemes offers limited advantages over the self-regulatory approach.

Independent External Oversight

Moving beyond the governance limitations of voluntary third-party certification mechanisms and creating effective external checks on the adoption of digital technologies for procurement governance would require external oversight. An option would be to make the envisaged third-party conformity assessments mandatory, but that would perpetuate the risks of regulatory capture and the outsourcing of the assurance system to private parties. A different, preferable option would be to assign the approval of the decisions to adopt digital technologies and the verification of the relevant risks assessments to a centralised authority also tasked with setting the applicable requirements therefor. The regulator would thus be placed as gatekeeper of the process of transition to digital procurement governance, instead of the atomised imposition of this role on public buyers. This would be reflective of the general features of the system of external controls proposed in the US State of Washington’s Bill SB 5116 (for discussion, see here).

The main goal would be to introduce an element of external verification of the assessment of potential AI harms and the related taking of risks in the adoption of digital technologies. It is submitted that there is a need for the regulator to be independent, so that the system fully encapsulates the advantages of third-party assurance mechanisms. It is also submitted that the data protection regulator may not be best placed to take on the role as its expertise—even if advanced in some aspects of data-intensive digital technologies—primarily relates to issues concerning individual rights and their enforcement. The more diffuse collective interests at stake in the process of transition to a new model of public digital governance (not only in procurement) would require a different set of analyses. While reforming data protection regulators to become AI mega-regulators could be an option, that is not necessarily desirable and it seems that an easier to implement, incremental approach would involve the creation of a new independent authority to control the adoption of AI in the public sector, including in the specific context of procurement digitalisation.

Conclusion

An analysis of emerging regulatory approaches in the EU and the UK shows that the adoption of digital technologies by public buyers is largely unregulated and only subjected to voluntary measures, or to open-ended obligations in areas without clear standards (which reduces the prospect of effective mandatory enforcement). The emerging model of AI risk regulation in the EU and UK follows more general trends and points at the consolidation of a (sub)model of risk-based digital procurement governance that strongly relies on self-regulation and self-assessment.

However, given its limited digital capabilities, the public sector is not best placed to control or influence the process of self-regulation, which results in the outsourcing of crucial regulatory tasks to technology vendors and the consequent risk of regulatory capture and suboptimal design of commercially determined governance mechanisms. These risks are compounded by the emerging ‘second party assurance’ model, as self-assessments by technology vendors would not be adequately scrutinised by public buyers, either due to a lack of digital capabilities or the unavoidable structural conflicts of interest of assurance providers with an interest in the use of the technology, or both. This ‘second party’ assurance model does not include adequate challenge mechanisms despite efforts to disclose (parts of) the relevant self-assessments. Such disclosures are constrained by general problems with ‘comply or explain’ information-based governance mechanisms, with the emerging model showing design features that have proven problematic in other contexts (such as corporate governance and financial market regulation). Moreover, there is no clear mechanism to contest the decisions revealed by the disclosures, including in the context of (delayed) specific uses of the technological solutions.

The analysis also shows how a model of third-party assurance or certification would be affected by the same issues of outsourcing of regulatory decisions to private parties, and ultimately would largely replicate the shortcomings of the self-regulatory and self-assessed model. A certification model would thus only generate a marginal improvement over the emerging model—especially given the functional approach to the use of certification and labels in procurement.

Moving past these shortcomings requires assigning the approval of decisions whether to adopt digital technologies and the verification of the related impact assessments to an independent authority: the ‘AI in the Public Sector Authority’ (AIPSA). I will fully develop a proposal for such authority in coming months.